高溫高壓核電閘閥流固熱耦合分析
以高溫高壓核電閘閥為研究對象,分析了流固熱三場耦合的原理。數(shù)值模擬后得到流體的壓力、速度和溫度分布,以及閘閥的變形和應(yīng)力分布。通過對閘閥施加載荷,分析壓力和溫度對閘閥性能的影響。模擬結(jié)果顯示,流體在閥座部位產(chǎn)生壓力波動,并在底部產(chǎn)生渦流,流體壓力能轉(zhuǎn)換成熱能。在不限制閘閥整體自由變形的情況下,因熱產(chǎn)生的變形較大,因流體壓力產(chǎn)生的應(yīng)力較大,熱變形能減小閘閥因流體壓力作用而產(chǎn)生的應(yīng)力。
關(guān)鍵詞:閘閥;高溫;高壓;核電;流固熱耦合
Abstract: A high-temperature and high-pressure nuclear power gate valve was studied,and three field coupling principle of fluid-solid-heat was analysed.Distribution of fluid pressure,velocity,temperature,valve deformation and stress were obtained by numerical simulation.The effect of fluid pressure and temperature upon the valve was analysed by loaded them on it.Simulation results show that the pressure of fluid fluctuates and eddy current generates in the seat area,the pressure energy of fluid transforms into heat energy.When the whole free-form deformation of the valve is unrestricted,heat generates larger deformation and fluid pressure generates greater stress,thermal deformation reduces the stress of the valve under fluid pressure.
Keywords: gate valve;high-temperature;high-pressure;nuclear power;fluid-solid-heat coupling
基金項目: 江蘇省科技支撐計劃項目(BE2010116);; 江蘇高校優(yōu)勢學科建設(shè)工程資助項目
流固熱耦合是指在由流體、固體和溫度場組成的系統(tǒng)中三者之間的相互作用,流固熱耦合問題是流動、應(yīng)力、溫度三場同時存在時的基本問題。流固熱耦合問題不僅僅是在流固耦合問題上附加一個體現(xiàn)溫度變化的條件,而是將體現(xiàn)流體流動、固體變形、溫度場變化的量如流體壓力、固相質(zhì)點位移、絕對溫度同時視為基本變量,基本變量處于平等地位。在流固熱耦合問題中,熱效應(yīng)與流體壓力導致固體變形,固體變形與流體流動導致溫度場變化,固體變形與熱效應(yīng)導致流動特性的改變,以上3 種效應(yīng)是同時發(fā)生的。
閘閥主要作為接通或切斷管道中的介質(zhì)用,即全開或全閉使用[1]。在核電站中,閘閥受到高溫高壓流體的作用,必然會產(chǎn)生變形及應(yīng)力[2]。為了防止全開時閘閥變形或應(yīng)力超過許用值而造成的結(jié)構(gòu)破壞,必須對其進行計算。由于閘閥工作時結(jié)構(gòu)的變形很小,對流體流動狀態(tài)及溫度的變化影響也很小,故此處只考慮流體壓力及溫度對閘閥結(jié)構(gòu)的影響,即單向耦合作用。
(1) 由于流道截面積在閥座部位產(chǎn)生變化,流體在此處產(chǎn)生壓力波動,并在底部產(chǎn)生渦流,減小閥座部位流道截面積的變化能減小渦流損失;
(2) 由于流體的流動速度快,在流經(jīng)閘閥的過程中溫度下降的趨勢很小。閥座部位產(chǎn)生渦流,流體壓力能轉(zhuǎn)換成熱能使壁面底部溫度升高;
(3) 在不限制閘閥整體自由變形的情況下,與流體壓力相比,因熱產(chǎn)生的變形較大,而應(yīng)力較小,熱變形能減小閘閥因流體壓力而產(chǎn)生的應(yīng)力。
參考文獻:
[1]陸培文.閥門設(shè)計入門與精通[M].北京:機械工業(yè)出版社,2009.
[2]張建華,劉春宇,徐相蘭,等.高溫高壓電站平板閘閥的設(shè)計與計算[J].閥門,2010,(2):1-4.
[3]王保國.傳熱學[M].北京:機械工業(yè)出版社,2009.
[4]安宗文,權(quán)帥峰.基于AWE的大口徑閘閥閥體強度分析與結(jié)構(gòu)優(yōu)化[J].蘭州理工大學學報,2009,35(2):62-66.
[5]張雪.水輪發(fā)電機流固熱耦合仿真分析及通風散熱參數(shù)研究[D].天津:天津大學,2007.
[6]Hao Wu,Noureddine Benseddiq,Abdellatif Imad.Frac-ture toughness prediction of a valve body:Numericalanalysis[J].Engineering Failure Analysis,2010,17(1):135-142.
[7]Kang Dachang,Sun Hongyi,Chen Yu,et al.Re-search on the“shear-extrusion”process to form large-scale cut-off valve bodies[J].Journal of MaterialsProcessing Technology,2001,117(1-2):15-20.
[8]黃建軍,鄭源,張盾.泵閘結(jié)構(gòu)流場的水力特性[J].排灌機械工程學報,2010,28(2):149-154.
[9]婁冬梅,趙飛.閘閥閥座外壓分析[J].鍋爐制造,2009,(6):63-64.