電動(dòng)閥門智能控制器的設(shè)計(jì)
以AT80C2051作為微控制器設(shè)計(jì)電動(dòng)閥門智能控制器,完成了電動(dòng)閥門的位置檢測(cè)、遠(yuǎn)程控制信號(hào)轉(zhuǎn)換、參數(shù)整定與靈敏度調(diào)整、閥門電機(jī)驅(qū)動(dòng)電路及鍵盤、顯示等硬件電路設(shè)計(jì),在建立數(shù)學(xué)模型的基礎(chǔ)上,設(shè)計(jì)并驗(yàn)證了系統(tǒng)的PID算法,完成了電路中相應(yīng)的軟件程序設(shè)計(jì),實(shí)現(xiàn)了對(duì)電動(dòng)閥門執(zhí)行機(jī)構(gòu)進(jìn)行實(shí)時(shí)控制,保證了操作的可靠性與精確性。運(yùn)用RS-485實(shí)現(xiàn)與遠(yuǎn)程控制中心間的通訊,在組態(tài)環(huán)境下進(jìn)行實(shí)時(shí)監(jiān)控運(yùn)行,實(shí)現(xiàn)儀表控制的數(shù)字化、智能化、網(wǎng)絡(luò)化與遠(yuǎn)程化,便利了操作,拓寬了閥門的使用環(huán)境范圍,節(jié)約了成本。組態(tài)實(shí)驗(yàn)調(diào)試的結(jié)果表明:該裝置線性關(guān)系較好,動(dòng)作時(shí)間短,具有較高的精度與友好的人機(jī)界面,誤差在0.3%以內(nèi)。
在現(xiàn)代工業(yè)自動(dòng)控制中,調(diào)節(jié)閥是最主要的執(zhí)行器件之一,在石油、化工、電力、水利等行業(yè)發(fā)揮著重要的作用。但國(guó)內(nèi)電動(dòng)調(diào)節(jié)閥技術(shù)與國(guó)外相比還有很大差距,國(guó)內(nèi)電動(dòng)調(diào)節(jié)閥普遍具有結(jié)構(gòu)不合理,控制精度低,安全性能差,不能很好地進(jìn)行人機(jī)通話、難于現(xiàn)場(chǎng)標(biāo)定和維修等缺陷。隨著電子技術(shù)、控制技術(shù)及通訊技術(shù)的發(fā)展,國(guó)內(nèi)閥門廠家紛紛對(duì)電動(dòng)調(diào)節(jié)閥進(jìn)行研究,各項(xiàng)指標(biāo)和性能都有所提高,但是相應(yīng)的成本也提高不少,價(jià)格比較昂貴的。為此研究一款價(jià)格實(shí)惠、結(jié)構(gòu)簡(jiǎn)單、功能齊全、便于現(xiàn)場(chǎng)操作和集中控制的電動(dòng)調(diào)節(jié)閥。
1、硬件結(jié)構(gòu)
1.1、總體結(jié)構(gòu)
系統(tǒng)的硬件電路主要由閥門的位置反饋信號(hào)檢測(cè)、遠(yuǎn)端控制信號(hào)的轉(zhuǎn)換和現(xiàn)場(chǎng)參數(shù)整定與靈敏度調(diào)整電路所構(gòu)成的模擬量輸入通道、A/D轉(zhuǎn)換、伺服電機(jī)驅(qū)動(dòng)及減速運(yùn)行的輸出電路、D/A轉(zhuǎn)換和外圍鍵盤顯示等電路以及上位機(jī)遠(yuǎn)程通訊等組成,如圖1所示?刂浦行男盘(hào)、現(xiàn)場(chǎng)實(shí)際開度的反饋信號(hào)、現(xiàn)場(chǎng)參數(shù)整定和靈敏度信號(hào)調(diào)整通過TL2543進(jìn)行A/D轉(zhuǎn)換后送到AT89C2051微控制器,微控制器根據(jù)這些信號(hào)進(jìn)行運(yùn)算處理,以控制電動(dòng)閥門執(zhí)行機(jī)構(gòu)的正反運(yùn)轉(zhuǎn)和全開全關(guān)運(yùn)行,使得閥門快速達(dá)到設(shè)定開度。采用LCD實(shí)時(shí)顯示閥門實(shí)際開度值,通過RS-485通訊直接將閥門現(xiàn)場(chǎng)反饋信號(hào)傳輸?shù)奖O(jiān)控中心的上位機(jī),在上位機(jī)的組態(tài)界面上進(jìn)行顯示,以記錄閥門開度的調(diào)節(jié)情況。同時(shí)中控中心的工作人員可以通過組態(tài)監(jiān)控,對(duì)現(xiàn)場(chǎng)閥門實(shí)際開度進(jìn)行設(shè)定,信號(hào)通過RS-485直接送回給控制器進(jìn)行操作。在電動(dòng)閥門出現(xiàn)故障時(shí),現(xiàn)場(chǎng)可以及時(shí)地做出報(bào)警,同時(shí)控制中心組態(tài)監(jiān)控也會(huì)發(fā)出報(bào)警,以采取相應(yīng)的保護(hù)措施。通過D/A將閥的開度轉(zhuǎn)換為4~20mA的電流信號(hào),傳輸給遠(yuǎn)程控制中心的模擬量采集模塊,以進(jìn)行遠(yuǎn)程操作與顯示。
1.2、輸入通道電路設(shè)計(jì)
輸入通道主要由閥門位置檢測(cè)信號(hào)、遠(yuǎn)端控制中心信號(hào)、現(xiàn)場(chǎng)參數(shù)整定與靈敏度調(diào)整電路與A/D轉(zhuǎn)換電路組成。
用安裝在閥門電動(dòng)機(jī)執(zhí)行機(jī)構(gòu)上的位置變送器來(lái)檢測(cè)實(shí)際開度反饋信號(hào),位置變送器是高性能的導(dǎo)電塑料精密旋轉(zhuǎn)電位器,具有較高分辨力的、高性能的經(jīng)濟(jì)類型產(chǎn)品。電位器旋轉(zhuǎn)角度和閥門開度有線性關(guān)系,旋轉(zhuǎn)電位器將閥門開度情況轉(zhuǎn)換成對(duì)應(yīng)的角度信號(hào),進(jìn)而轉(zhuǎn)換成系統(tǒng)所接收1~5V的DC電壓信號(hào),因此可以依據(jù)電壓和角度的線性關(guān)系得到相應(yīng)的位置信號(hào)。閥門實(shí)際開度反饋信號(hào)閥門實(shí)際開度經(jīng)過位置檢測(cè)機(jī)構(gòu)轉(zhuǎn)換成相應(yīng)的電壓信號(hào)MA2,經(jīng)過射級(jí)跟隨器進(jìn)行阻抗處理變化之后的信號(hào)送到A/D轉(zhuǎn)換芯片TL2543的IN1口。電路如圖2所示,其中VD3、VD45起到鉗位作用。
圖1 系統(tǒng)結(jié)構(gòu)圖
圖2 控制端信號(hào)轉(zhuǎn)換電路圖
工業(yè)生產(chǎn)中傳送的標(biāo)準(zhǔn)的電信號(hào)可能是4~20mA的直流電流,也可能是1~5V的直流電壓,控制中心的信號(hào)為4~20mA的電流信號(hào),當(dāng)來(lái)自控制中心的信號(hào)MA1經(jīng)過圖3所示的信號(hào)轉(zhuǎn)換電路時(shí),預(yù)先應(yīng)當(dāng)將MK2閉合,此時(shí)電流輸入信號(hào)經(jīng)電阻R2、GND形成回路,4~20mA的電流信號(hào)經(jīng)過轉(zhuǎn)換電阻R2流向地,此時(shí)的輸入電流信號(hào)就被轉(zhuǎn)換成1~5V的電壓信號(hào),即A/D轉(zhuǎn)化器TL2543的IN0口的電位。亦即信號(hào)的最小值4mA或1V對(duì)應(yīng)精密電位器的最小值,也相當(dāng)于閥門的起點(diǎn)位置。信號(hào)最大值20mA或5V對(duì)應(yīng)精密電位器的最大值,也相當(dāng)于閥門滿度位置。
圖3 位置采集信號(hào)轉(zhuǎn)化電路
為使閥門執(zhí)行器能夠適應(yīng)工業(yè)生產(chǎn)中不同型號(hào)與口徑閥門,滿足各種的閥門裝置具有不同的初始位置和滿度位置,提高系統(tǒng)的靈敏度,增強(qiáng)通用性,做到測(cè)量的精確性,采用3個(gè)滑動(dòng)電阻RP1、RP2、RP3構(gòu)成調(diào)零、調(diào)滿和調(diào)靈敏度電路,使閥門電動(dòng)執(zhí)行機(jī)構(gòu)的零點(diǎn)和最大角位移都在一定范圍內(nèi)可調(diào),減小誤差。調(diào)零(ZERO)、調(diào)滿(SPAN)、靈敏度(PROP)電路如圖4所示。IN2、IN3、IN4端的電壓就為傳輸?shù)紸/D轉(zhuǎn)換TL2543的調(diào)滿、調(diào)零和靈敏度信號(hào)。閥門在運(yùn)行之前要將這些信號(hào)進(jìn)行A/D轉(zhuǎn)換反饋到為微控制器中進(jìn)行處理,來(lái)控制電動(dòng)執(zhí)行機(jī)構(gòu)下一步的轉(zhuǎn)向。
圖4 零點(diǎn)、滿量程、靈敏度調(diào)整電路
1.3、閥門電機(jī)驅(qū)動(dòng)電路設(shè)計(jì)
微控制器將轉(zhuǎn)換之后的控制信號(hào)、閥門實(shí)際開度反饋信號(hào)、靈敏度信號(hào)等進(jìn)行相應(yīng)的運(yùn)算,判斷閥門執(zhí)行機(jī)構(gòu)該向哪個(gè)方向運(yùn)行,從而向?qū)?yīng)的I/O口送出相應(yīng)的TTL觸發(fā)信號(hào),信號(hào)經(jīng)過2個(gè)或門互鎖正反轉(zhuǎn)觸發(fā)和轉(zhuǎn)換電路與固態(tài)繼電器的觸發(fā)控制電路轉(zhuǎn)換成可以驅(qū)動(dòng)伺服電機(jī)運(yùn)動(dòng)的交流控制電平,圖5中單片機(jī)控制器發(fā)出2個(gè)TTL觸發(fā)信號(hào),運(yùn)用與非門的功能,將電機(jī)的正轉(zhuǎn)、反轉(zhuǎn)、停用工作狀態(tài)用P3.2、P3.3電平狀態(tài)來(lái)控制,P3.2、P3.3的TTL觸發(fā)信號(hào)經(jīng)過與非門傳輸?shù)焦虘B(tài)繼電器38D05的DC-上,為防止兩個(gè)觸發(fā)器信號(hào)同時(shí)為低電平導(dǎo)通,在固態(tài)繼電器的DC+處分別接上拉電阻,已在初始化的時(shí)候把觸發(fā)信號(hào)拉成高電平,避免誤導(dǎo)通,從而達(dá)到閥門的正反、停止控制。同時(shí)電路中接入極限位置行程開關(guān),當(dāng)閥門運(yùn)轉(zhuǎn)至極限位置,電機(jī)停止運(yùn)轉(zhuǎn),起到保護(hù)的作用。為了準(zhǔn)確及時(shí)平穩(wěn)控制閥門的位置,在伺服電機(jī)驅(qū)動(dòng)增加減速器,減速器采用諧波齒輪傳動(dòng),把伺服電機(jī)高速轉(zhuǎn)矩、小力矩的輸出功率轉(zhuǎn)換成執(zhí)行機(jī)構(gòu)輸出軸的低轉(zhuǎn)速、大力矩的輸出功率,以推動(dòng)調(diào)節(jié)結(jié)構(gòu),使閥門運(yùn)行平緩、承載能力強(qiáng)、傳動(dòng)精度高。
圖5 閥門電機(jī)驅(qū)動(dòng)電路
2、系統(tǒng)控制算法與仿真
2.1、系統(tǒng)建模
閥門控制屬于典型的位置隨動(dòng)控制系統(tǒng),由位置檢測(cè)機(jī)構(gòu)檢測(cè)到的信號(hào)與實(shí)際信號(hào)相比較產(chǎn)生誤差信號(hào),經(jīng)過控制器進(jìn)行A/D轉(zhuǎn)換后進(jìn)行PID運(yùn)算,參數(shù)調(diào)整等輸出電壓與測(cè)速發(fā)電機(jī)反饋電壓形成的誤差電壓作為伺服電機(jī)驅(qū)動(dòng)電壓,通過減速器后輸出實(shí)際角度?刂葡到y(tǒng)結(jié)構(gòu)框圖如圖6所示。
圖6 閥門控制系統(tǒng)結(jié)構(gòu)圖
伺服電機(jī)部分的傳遞函數(shù)可以表示為:
式中:電機(jī)增益kt=2;Ra=6Ω;La=12mH;轉(zhuǎn)動(dòng)慣量J=0.006kg·m2;Ce=Cm=0.3N·m/A;黏性摩擦系數(shù)f=0.2N·m/s;減速比i=0.1。減速器部分可以看出以純積分環(huán)節(jié)。
2.2、PID控制與仿真
采用PID控制算法,通過臨界比例度法與湊試法整定PID控制器的參數(shù),得到Kp=10,Ti=0.01,Td=0.5,其正弦輸入下跟隨曲線如圖7所示。
圖7 電動(dòng)閥門跟隨曲線
從圖7可以看出輸入輸出曲線基本一致,跟隨特性好,調(diào)節(jié)速度快,能夠滿足設(shè)計(jì)要求。
3、系統(tǒng)軟件設(shè)計(jì)
開機(jī)初始化,由上電復(fù)位后的主程序執(zhí)行,用來(lái)初始化系統(tǒng)的硬件資源和軟件資源,對(duì)串行口、定時(shí)器、內(nèi)部寄存器初始化;完成開機(jī)電信號(hào)故障檢測(cè),如果有電信號(hào)故障則亮紅燈報(bào)警,沒有故障則進(jìn)行鍵盤掃描,判斷是否有強(qiáng)制執(zhí)行設(shè)置,有則執(zhí)行相應(yīng)動(dòng)作,沒有則采集檢測(cè)的位置信號(hào),與設(shè)定值和控制中心命令值比較,以調(diào)整參數(shù),開啟A/D轉(zhuǎn)換并數(shù)字濾波,經(jīng)過PID運(yùn)算后,驅(qū)動(dòng)閥門動(dòng)作,控制電機(jī)轉(zhuǎn)動(dòng)的方向與角度,并顯示相應(yīng)閥門實(shí)際開度。同時(shí)向上位機(jī)實(shí)時(shí)提供實(shí)際開度數(shù)據(jù)信息,顯示閥門開度,故障報(bào)警等。
4、試驗(yàn)調(diào)試
遠(yuǎn)程監(jiān)控中心PC采用組態(tài)進(jìn)行程序設(shè)計(jì),通過PC的串行接口傳輸和接收數(shù)據(jù),在該界面中預(yù)設(shè)閥門的開度以及實(shí)時(shí)開度顯示,歷史數(shù)據(jù)報(bào)表的查閱。
表1為從組態(tài)界面上讀取的電動(dòng)閥預(yù)設(shè)開度和實(shí)際開度之間的實(shí)時(shí)數(shù)據(jù)。
從表1中可以看出閥門實(shí)際開度值與預(yù)設(shè)開度值基本一致,最大誤差僅0.25%,符合設(shè)計(jì)要求達(dá)到的精度。
組態(tài)運(yùn)行下閥門開度值K與相應(yīng)出口流量Q間測(cè)得的數(shù)據(jù)報(bào)表如表2所示。
表1 預(yù)設(shè)開度與實(shí)際開度對(duì)比
表2 系統(tǒng)歷史數(shù)據(jù)報(bào)表
對(duì)以上數(shù)據(jù)利用MATLAB進(jìn)行多項(xiàng)式擬合,擬合曲線如圖8所示。
圖8 閥門輸出曲線
從圖8中可以看出出口流量和閥門開度成正比的線性關(guān)系,其關(guān)系式為:Q=0.0983K-1.8621,線性關(guān)系理想。
由圖表分析可知,在相同變化行程情況下,閥門開度較小時(shí),相對(duì)流量變化值小,比較緩和;閥門開度較大時(shí),控制靈敏有效。所以在實(shí)際中用控制閥門開度來(lái)控制流量大小。
5、結(jié)束語(yǔ)
以單片微機(jī)為控制器設(shè)計(jì)了電動(dòng)閥門控制器,能夠接收控制中心命令信號(hào)和鍵盤控制命令,根據(jù)閥門實(shí)際反饋信號(hào)實(shí)現(xiàn)正轉(zhuǎn)、反轉(zhuǎn)、停轉(zhuǎn)的閉環(huán)控制;能夠根據(jù)實(shí)際運(yùn)行狀況做出判斷,進(jìn)行故障報(bào)告、應(yīng)急處理、顯示等工作;具備遠(yuǎn)程通信功能,能夠在組態(tài)環(huán)境下進(jìn)行監(jiān)控運(yùn)行,實(shí)現(xiàn)儀表控制的數(shù)字化,智能化、網(wǎng)絡(luò)化與遠(yuǎn)程化,拓寬了電動(dòng)閥門的使用環(huán)境的范圍,節(jié)約了成本。實(shí)驗(yàn)調(diào)試的結(jié)果表明:該裝置線性關(guān)系較好,動(dòng)作時(shí)間斷,誤差在0.3%以內(nèi),具有較高的精度。